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1 Introduction

“Experimental applied mathematics” comprises
the usage of modern computer technology as an ac-
tive agent of research, for the purposes of gaining
insight and intuition, discovering new patterns and
relationships, testing and conjectures, and con-
firming analytically derived results, much in the
same spirit that laboratory experimentation is em-
ployed in the physical sciences. It is closely related
to what is known as “experimental mathematics”
in pure mathematics, as has been described else-
where, including the Princeton Companion [11].

In one sense, most applied mathematicians have
for decades aggressively integrated computer tech-
nology into their research. What is meant here is
computationally-assisted applied mathematical re-
search that features one or more of the following
characteristics:

1. Computation for exploration and discovery.

2. Symbolic computing.

3. High-precision arithmetic.

4. Integer relation algorithms.

5. Graphics and visualization.

6. Connections with nontraditional mathematics.

Depending on the context, the role of rigorous
proof in experimental applied mathematics may be
much reduced or may be unchanged from that of
its pure sister. There are many complex applied
problems where there is little point to proving the
validity of a minor component rather than find-
ing strong evidence for the appropriateness of the
general method.

High-precision arithmetic. Most work in sci-
entific or engineering computing relies on either 32-
bit IEEE floating-point arithmetic (roughly seven

decimal digit precision) or 64-bit IEEE floating-
point arithmetic (roughly 16 decimal digit preci-
sion). But for an increasing body of applied mathe-
matical studies, even 16-digit arithmetic is not suf-
ficient. The most common form of high-precision
arithmetic is “double-double” or “quad-precision”,
equivalent to roughly 31-digit precision. Other
studies require hundreds or thousands of digits.

Algorithms for performing arithmetic and evalu-
ating common transcendental functions with high-
precision data structures have been known for
some time, although challenges remain. Math-
ematical software packages such as Maple and
Mathematica typically include facilities for arbi-
trarily high precision, but for some applications re-
searchers rely on internet-available software, such
as the GNU multiprecision package.

Integer relation detection. Given a vector of
real or complex numbers xi, an integer relation al-
gorithm attempts to find a nontrivial set of integers
ai such that a1x1 + a2x2 + · · · + anxn = 0. One
very common application of such an algorithm is
to find new identities involving computed numeric
constants.

For example, suppose one suspects that an in-
tegral (or any other numerical value) x1 might
be a linear sum of a list of terms x2, x3, · · · , xn.
One can compute the integral and all the terms
to high precision, typically several hundred dig-
its, then provide the vector (x1, x2, · · · , xn) to an
integer relation algorithm. It will either deter-
mine that there is an integer-linear relation among
these values, or provide a lower bound on the Eu-
clidean norm of any integer relation vector (ai)
that the input vector might satisfy. If the al-
gorithm does produce a relation, then solving it
for x1 produces an experimental identity for the
original integral. The most commonly employed
integer relation algorithm is the “PSLQ” algo-
rithm of mathematician-sculptor Helaman Fergu-
son, although the Lenstra-Lenstra-Lovasz (LLL)
algorithm can also be adapted for this purpose.

2 Historical examples

The best way to clarify what is meant by exper-
imental applied mathematics is to show some ex-
amples of this paradigm in action.

1



2

Gravitational boosting. One interesting
space-age example is the unexpected discovery of
gravitational boosting by Michael Minovitch at
the Jet Propulsion Laboratory in 1961. Minovitch
described how he discovered that Hohmann
transfer ellipses were not, as then believed, the
minimum-energy way to reach the outer planets.
Instead, he discovered computationally that
spacecraft orbits which pass close by other planets
could gain a “slingshot effect” substantial boost in
speed (compensated by an extremely small change
in the orbital velocity of the planet) on their way
to a distant location. Until this demonstration,
“most planetary mission designers considered the
gravity field of a target planet to be somewhat
of a nuisance, to be cancelled out, usually by
onboard Rocket thrust.”

Without such a boost from Jupiter, Saturn and
Uranus, the Voyager mission would have taken
more than 30 years to reach Neptune; instead, Voy-
ager reached Neptune in only ten years. Indeed,
without gravitational boosting, we would still be
waiting! We would have to wait much longer for
Voyager to leave the solar system as it now is.

One premier example of 20th century applied
experimental mathematics is the development of
fractal theory, as exemplified by the works of
Benoit Mandelbrot. Mandelbrot studied many
more examples of fractal sets, many of them with
direct connections to nature. Applications include
analyses of the shapes of coastlines, mountains, bi-
ological structures, blood vessels, galaxies, even
music, art and the stock market. For example,
Mandelbrot found that the coast of Australia, the
West Coast of Britain and the land frontier of Por-
tugal all satisfy shapes given by a fractal dimension
of approximately 1.75.

In the 1960s and early 1970s, applied mathe-
maticians began to computationally explore fea-
tures of chaotic iterations that had previously been
studied by analytic methods. May, Lorenz, Man-
delbrot, Feigenbaum, Ruelle, York and others led
the way in utilizing computers and graphics to ex-
plore this realm, as chronicled for example in Gle-
ick’s book Chaos: Making a New Science.

The uncertainty principle. We finish this sec-
tion with a principle that, while discovered early
in the 20th century by conventional formal reason-

ing, could have been discovered much more easily
with computational tools.

Most readers have heard of the uncertainty prin-
ciple from quantum mechanics, which is often ex-
pressed as the fact that the position and mo-
mentum of a subatomic-scale particle cannot si-
multaneously be prescribed or measured to ar-
bitrary accuracy. Others may be familiar with
the uncertainty principle from signal processing
theory, which is often expressed as the fact that
a signal cannot simultaneously be “time-limited”
and “frequency-limited.” Remarkably, the precise
mathematical formulations of these two principles
are identical.

Consider a real, continuously differentiable, L2

function f(t), which further satisfies |t|3/2+εf(t)→
0 as |t| → ∞ for some ε > 0. (This assures con-
vergence of the integrals below.) For convenience,
we assume f(−t) = f(t), so the Fourier transform

f̂(x) of f(t) is real, although this is not necessary.
Define

E(f) =

∫ ∞
−∞

f2(t) dt V (f) =

∫ ∞
−∞

t2f2(t) dt

f̂(x) =

∫ ∞
−∞

f(t)e−itx dt Q(f) =
V (f)

E(f)
· V (f̂)

E(f̂)
.

(1)

Then the uncertainty principle is the assertion that
Q(f) ≥ 1/4, with equality if and only if f(t) =

ae−(bt)
2/2 for real constants a and b. The proof

of this fact is not terribly difficult but is hardly
enlightening—see, for example [5, pg. 183–188].

Let us approach this problem as an experimental
mathematician might. As mentioned, it is natural
when studying Fourier transforms (particularly in
the context of signal processing) to consider the
“dispersion” of a function and to compare this with
the dispersion of its Fourier transform. Noting
what appears to be an inverse relationship between
these two quantities, we are led to consider Q(f) in
(1). With the assistance of Maple or Mathematica,
one can readily work out some examples, as shown
in Table 1. Note that each of the entries in the last
column is in the range (1/4, 1/2). Can one get any
lower?

To further study this problem experimentally,
note that the Fourier transform f̂ of f(t) can be
closely approximated with a Fast Fourier trans-
form, after suitable discretization. The integrals
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f(t) Interval f̂(x) Q(f)

1− t sgn t [−1, 1] 2(1− cosx)/x2 3/10

1− t2 [−1, 1] 4(sinx− x cosx)/x3 5/14

1/(1 + t2) [−∞,∞] π exp(−x sgnx) 1/2

e−|t| [−∞,∞] 2/(1 + x2) 1/2

1 + cos t [−π, π] 2 sin(πx)/(x− x3) (π2 − 15/2)/9

Table 1: Q values for various functions.
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Figure 1: Q-minimizer and matching Gaussian.

V and E can be similarly evaluated numerically.
Then one can adopt a search strategy, starting,
say, with a “tent function,” then perturbing it up
or down by some δ on a regular grid. When for a
given δ, a minimizing function f(t) has been found,
reduce δ, refine the grid and repeat. Terminate
when δ is sufficiently small, say 10−6 or so. (For
additional details, see [5].)

The resulting function f(t) is shown in Figure 1.
Needless to say, its shape strongly suggests a Gaus-
sian probability curve. Figure 1 displays both f(t)

and the function e−(bt)
2/2, where b = 0.45446177—

they are identical to the precision of the plot!

In short, it is a relatively simple matter, using
21st-century computational tools, to numerically
“discover” the uncertainty principle. Doubtless
the same is true of many other historical princi-
ples of physics, chemistry and other fields.

3 21st century studies

It is fair to say that the computational-
experimental approach in applied mathematics has
greatly accelerated in the 21st century. We show
here a few specific illustrative examples. These in-
clude several by the present authors, because we

are familiar with them. There are doubtless many
others that we are not aware of that are similarly
exemplary of the experimental paradigm.

3.1 Chimera states in oscillator arrays

One interesting example of experimental applied
mathematics was the 2002 discovery by Kuramoto,
Battogtokh and Sima of “chimera” states, which
arise in certain nonlocally coupled oscillator sys-
tems (i.e., arrays of identical oscillators, where in-
dividual oscillators are correlated with oscillators
some distance away in the array). These sys-
tems can arise in a wide range of physical sys-
tems, including Josephson junction arrays, oscil-
lating chemical systems, epidemiological models,
neural networks underlying snail shell patterns and
“ocular dominance stripes” observed in the visual
cortex of cats and monkeys. In chimera states,
named for the mythological beast that incongru-
ously combines features of lions, goats and ser-
pents, the oscillator array bifurcates into two rel-
atively stable groups, the first composed of coher-
ent, phased-locked oscillators, and the second com-
posed of incoherent, drifting oscillators.

According to Abrams and Strogatz, who sub-
sequently studied these states in detail, most ar-
rays of oscillators quickly converge into one of
four typical patterns: (a) synchrony, with all os-
cillators moving in unison; (b) solitary waves in
one dimension or spiral waves in two dimensions,
with all oscillators locked in frequency; (c) inco-
herence, where phases of the oscillators vary quasi-
periodically, with no global spatial structure; and
(d) more complex patterns, such as spatiotempo-
ral chaos and intermittency. But in chimera states,
phase locking and incoherence are simultaneously
present in the same system.

The simplest governing equation for a continu-
ous one-dimensional chimera array is

∂φ

∂t
= ω −

∫ 1

0

G(x− x′) sin
[
φ(x, t)− φ(x′, t) + α

]
dx′,

(2)

where φ(x, t) specifies the phase of the oscillator
given by x ∈ [0, 1) at time t, and G(x−x′) specifies
the degree of nonlocal coupling between the oscil-
lators x and x′. A discrete, computable version
of (2) can be obtained by replacing the integral
with a sum over a 1-D array (xk, 0 ≤ k < N),
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Figure 2: Phase pattern for a typical chimera state.

where xk = k/N . Kuramoto and Battogtokh took
G(x− x′) = C exp(−κ|x− x′) for constant C and
parameter κ.

Specifying κ = 4, α = 1.457, array size N = 256
and time step size ∆t = 0.025, and starting from
φ(x) = 6 exp

[
−30(x− 1/2)2

]
r(x), where r is a

uniform random variable on [−1/2, 1/2), gives rise
to the phase patterns shown in Figure 2. Note that
the oscillators near x = 0 and x = 1 appear to
be phase-locked, moving in near-perfect synchrony
with their neighbors, but those oscillators in the
center drift wildly in phase, both with respect to
their neighbors and to the locked oscillators.

Numerous researchers have studied this phe-
nomenon since its initial numerical discovery.
Abrams and Strogatz studied the coupling func-
tion is given by G(x) = (1 + A cosx)/(2π), where
0 ≤ A ≤ 1, for which they were able to solve the
system analytically, and then extended their meth-
ods to more general systems. They found that
chimera systems have a characteristic life cycle: a
uniform phase-locked state, followed by a spatially
uniform drift state, then a modulated drift state,
then the birth of a chimera state, followed a period
of stable chimera, then a saddle-node bifurcation,
and finally an unstable chimera.

3.2 Winfree oscillators

One closely related development is the resolution of
the Quinn-Rand-Strogatz (QRS) constant. Quinn,
Rand and Strogatz had studied the Winfree model
of coupled nonlinear oscillators, namely

θ̇i = ωi +
κ

N

N∑
j=1

−(1 + cos θj) sin θi (3)

for 1 ≤ i ≤ N , where θi(t) is the phase of oscil-
lator i at time t, the parameter κ is the coupling

strength, and the frequencies ωi are drawn from a
symmetric unimodal density g(w). In their analy-
ses, they were led to the formula

0 =

N∑
i=1

(
2
√

1− s2(1− 2(i− 1)/(N − 1))2

− 1√
1− s2(1− 2(i− 1)/(N − 1))2

)
,

implicitly defining a phase offset angle φ = sin−1 s
due to bifurcation. The authors conjectured, on
the basis of numerical evidence, the asymptotic be-
havior of the N -dependent solution s to be

1− sN ∼
c1
N

+
c2
N2

+
c3
N3
· · · ,

where c1 = 0.60544365 . . . is now known as the
QRS constant.

In 2008, the present authors together with
Richard Crandall computed the numerical value
of this constant to 42 decimal digits, obtaining

c1 ≈ 0.60544365719673274947892284244 . . . .

With this numerical value in hand, they were able
to demonstrate that c1 is the unique zero of the
Hurwitz zeta function ζ(1/2, z/2) on the interval
0 ≤ z ≤ 2. What’s more, they found that c2 =
−0.104685459 . . . is given analytically by

c2 = c1 − c21 − 30
ζ(−1/2, c1/2)

ζ(3/2, c1/2)
.

3.3 High precision dynamics

Periodic orbits form the “skeleton” of a dynami-
cal system and provide much useful information,
but when the orbits are unstable, high-precision
numerical integrators are often required to obtain
numerically meaningful results.

For instance, in Figure 3 we show computed
symmetric periodic orbit for the (7+2)-Ring prob-
lem using double and quadruple precision. The
(n + 2)-body Ring problem describes the motion
of an infinitesimal particle attracted by the grav-
itational field of n + 1 primary bodies, n in the
vertices of a regular polygon is rotating in its own
plane about the center with constant angular ve-
locity. Each point corresponds to the initial condi-
tions of one symmetric periodic orbit, and the grey
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area corresponds to regions of forbidden motion
(delimited by the limit curve). To avoid “false”
initial conditions it is useful to check if the initial
conditions generate a periodic orbit up to a given
tolerance level; but for highly unstable periodic or-
bits we may lose several digits in each period, so
that double precision is not enough, resulting in
gaps in the figure.
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Figure 3: Symmetric periodic orbits (m denotes multi-

plicity of the periodic orbit) in the most chaotic zone of

the (7+2)-Ring problem using double (A) and quadru-

ple (B) precision. (Reproduced by permission.)

Hundred-digit precision arithmetic plays a fun-
damental role in a 2010 study of the fractal proper-
ties of the Lorenz attractor [3.xy] (see Figure
4). The first plot shows the intersection of an arbi-
trary trajectory on the Lorenz attractor with the
section z = 27, in a rectangle in the x − y plane.
All later plots zoom in on a tiny region (too small
to be seen by the unaided eye) at the center of the
red rectangle of the preceding plot to show that
what appears to be a line is in fact not one.

The Lindstedt-Poincaré method for computing
periodic orbits is based on the Lindstedt-Poincaré
perturbation theory, Newton’s method for solv-
ing nonlinear systems, and Fourier interpolation.
Viswanath has used this in combination with high-
precision libraries to obtain periodic orbits for the
Lorenz model at the classical Saltzman’s param-
eter values. This procedure permits one to com-
pute, to high accuracy, highly unstable periodic or-
bits that otherwise would lose all numerical signifi-

Figure 4: Fractal property of the Lorenz attractor.

(Reproduced by permission.)

cance. For these reasons, high-precision arithmetic
plays a fundamental role in the study of the frac-
tal properties of the Lorenz attractor (see Figures
4 and 5) and in a consistent formal development
of complex singularities of the Lorenz system using
infinite series.

For additional details and references, see [4].
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and number of iterations in a 1000-digit computation

of the periodic orbits LR and LLRLR of the Lorenz

model. (Reproduced by permission.)

3.4 Ising integrals

The previously mentioned study employed 100-
digit arithmetic. Much higher precision has proven
essential in studies with Richard Crandall (see
[5, 2]) of the following integrals that arise in the
Ising theory of mathematical physics and in quan-
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tum field theory:

Cn =
4

n!

∫ ∞
0

· · ·
∫ ∞
0

1(∑n
j=1(uj + 1/uj)

)2 dU

Dn =
4

n!

∫ ∞
0

· · ·
∫ ∞
0

∏
i<j

(
ui−uj

ui+uj

)2
(∑n

j=1(uj + 1/uj)
)2 dU

En = 2

∫ 1

0

· · ·
∫ 1

0

 ∏
1≤j<k≤n

uk − uj
uk + uj

2

dT,

where dU = du1

u1
· · · dun

un
, dT = dt2 · · · dtn, and

uk =
∏k
i=1 ti. Note that En ≤ Dn ≤ Cn.

Direct computation of these integrals from their
defining formulas is very difficult, but for Cn, it
can be shown that

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp,

where K0 is the modified Bessel function. Numer-
ical values so computed were used with PSLQ to
deduce results such as C4 = 7ζ(3)/12, and further-
more to discover that

lim
n→∞

Cn = 0.63047350 . . . = 2e−2γ ,

with additional higher-order terms in an asymp-
totic expansion. One intriguing experimental re-
sult (not yet proven) is the following:

E5
?
= 42− 1984 Li4

(
1

2

)
+

189π4

10
− 74ζ(3)

− 1272ζ(3) log 2 + 40π2 log2 2− 62π2

3

+
40π2 log 2

3
+ 88 log4 2 + 464 log2 2− 40 log 2,

found by a multi-hour computation on a highly
parallel computer system, and confirmed to 250-
digit precision. Here Li4(z) =

∑
k≥1 z

k/k4 is the
standard order-4 polylogarithm.

3.5 Ramble integrals and short walks

Consider, for complex s, the n-dimensional ramble
integrals [3]

Wn(s) =

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx, (4)

which occur in the theory of uniform random walk
integrals in the plane, where at each step a unit-
step is taken in a random direction as first studied
by Pearson, Rayleigh and others a hundred years
ago. Integrals such as (4) are the s-th moment
of the distance to the origin after n steps. As is
well known, various types of random walks arise
in fields as diverse as aviation, ecology, economics,
psychology, computer science, physics, chemistry,
and biology.

Walks and measures. In 2010 work (by J. Bor-
wein, A. Straub , J. Wan and W. Zudilin), using a
combination of analysis and high-precision numer-
ical computation, results such as

W ′n(0) = −n
∫ ∞
0

log(x)Jn−10 (x)J1(x)dx,

were obtained, where Jn(x) denotes the Bessel
function of the first kind and γ denotes Euler’s
constant. These results, in turn, lead to various
closed forms and have been used to confirm, to
600-digit precision, the following Mahler measure
conjecture adapted from Villegas:

W
′

5(0)
?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t)

+η3(e−t)η3(e−15t)
}
t3 dt,

where the Dedekind eta-function can be computed
from: η(q) =

q1/24
∏
n≥1

(1− qn) = q1/24
∞∑

n=−∞
(−1)nqn(3n+1)/2.

There are remarkable connections between diverse
parts of pure, applied and computational mathe-
matics lying behind these results. As often there is
a fine interplay between developing better compu-
tational tools—especially for special functions and
polylogarithms—and discovering new structure.

Densities of short walks. One of the deepest
related discoveries is the following closed form for
the radial density of a four step uniform random
walk in the plane: for 2 ≤ α ≤ 4 one has the real
hypergeometric form:

p4(α) =
2

π2

√
16− α2

α
3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− α2

)3
108α4

)
.
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Remarkably the real part of the right side of this
identity is valid everywhere on [0, 4], as plotted
in Figure 6. This was an entirely experimental

Figure 6: The “shark-fin” density of a four step walk.

discovery—involving at least one fortunate error—
but is now fully proven.

3.6 Moments of elliptic integrals

The previous study on ramble integrals also led
to a comprehensive analysis of moments of elliptic
integral functions of the form:∫ 1

0

xn0Kn1(x)K ′n2(x)En3(x)E′n4(x)dx,

where the elliptic functions K,E and their com-
plementary versions are:

K(x) =

∫ 1

0

dt√
(1− t2)(1− x2t2)

E(x) =

∫ 1

0

√
1− x2t2√
1− t2

dt

K ′(x) = K(
√

1− x2) E′(x) = E(
√

1− x2).

Computations of these integrals to 3200-digit
precision, combined with searches for relations us-
ing the PSLQ algorithm, yielded thousands of un-
expected relations among these integrals (see [3]).
The scale of the computation was required by the
number of integrals under investigation.

3.7 Snow crystals

Computational experimentation has even been
useful in the study of snowflakes. In a 2007 study,

Janko Gravner and David Griffeath used a so-
phisticated computer-based simulator to study the
process of formation of these structures, known
in the literature as snow crystals and informally
as snofakes. Their model simulated each of the
key steps, including diffusion, freezing, and at-
tachment, and thus enabled researchers to study,
dependence on melting parameters. Snow crys-
tals produced by their simulator vary from simple
stars, to six-sided crystals with plate-ends, to crys-
tals with dendritic ends, and look remarkably sim-
ilar to natural snow crystals. Among the findings
uncovered by their simulator is the fact that these
crystals exhibit remarkable overall symmetry, even
in the process of dynamically changing param-
eters. Their simulator is publicly available at
http://psoup.math.wisc.edu/Snofakes.htm.

4 Limits of computation

Developments such as the above have led to re-
examination of the role of computation in formal
mathematical work. To begin with, a legitimate
question is whether one can truly trust—in the
mathematical sense—the result of a computation,
since there are many possible sources of errors:
unreliable numerical algorithms; bug-ridden com-
puter programs implementing these algorithms;
system software or compiler errors; hardware er-
rors, either in processing or storage; insufficient
numerical precision; and obscure errors of hard-
ware, software or programming that surface only
in particularly large or difficult computations.

As a single example of the sorts of difficulties
that can arise, the present authors found that nei-
ther Maple nor Mathematica was able to numeri-
cally evaluate constants of the form

1

2π

∫ 2π

0

f(eiθ) dθ

where f(θ) = Li1 (θ)
m

Li
(1)
1 (θ)

p
Li1 (θ + π)

n

Li
(1)
1 (θ − π)

q
(for m,n, p, q ≥ 0 integers) to high

precision in reasonable run time. In part this
was because of the challenge of computing poly-
log and polylog derivatives (with respect to order)
at complex arguments. The version of Mathemat-
ica that we were using was able to numerically
compute ∂Lis(z)/∂s to high precision, which is re-
quired here, but such evaluations were not only
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many times slower than Lis(z) itself, but in some
cases did not even return a tenth of the requested
number of digits correctly.

For such reasons, experienced programmers of
mathematical or scientific computations routinely
insert validity checks in their code. Typically such
checks take advantage of known high-level mathe-
matical facts, such as the fact that the product of
two matrices used in the calculation should always
give the identity, or that the results of a convo-
lution of integer data, done using a fast Fourier
transform, should all be very close to integers.

For instance, Kanada’s 2002 computation of π to
1.3 trillion decimal digits involved first computing
slightly over one trillion hexadecimal (base-16) dig-
its. He found that the 20 hex digits of π beginning
at position 1012 + 1 are B4466E8D21 5388C4E014.
Kanada then calculated these hex digits using the
“Bailey-Borwein-Plouffe” algorithm. The result
was B4466E8D21 5388C4E014, dramatically con-
firming that both results are almost certainly cor-
rect. While one cannot rigorously assign a “proba-
bility” to this event, the chances that two random
strings of 20 hex digits perfectly agree is one in
1620 ≈ 1.2089× 1024.

Even so, researchers are well-advised to be cau-
tious with experimentation. Consider:∫ ∞

0

cos(2x)

∞∏
n=1

cos(x/n) dx (5)

= 0.39269908169872415480783042290993786

0524645434187231595926 . . . .

At first glance, this appears to be π/8, but upon
comparison with the numerical value

π/8 = 0.3926990816987241548078304229099

37860524646174921888227621 . . . ,

the two values disagree after the 42nd digit!
Richard Crandall later explained this mystery,

via a physically motivated analysis of running out
of fuel random walks. He found the following very
rapidly convergent series expansion, of which for-
mula (5) is the first term:

π

8
=

∞∑
m=0

∫ ∞
0

cos[2(2m+ 1)x]

∞∏
n=1

cos(x/n) dx.

Two series terms suffice for 500-digit agreement.

As a final sobering example, consider

σp =

∞∑
n=−∞

sinc(n/2) sinc(n/3) · · · sinc(n/p) dx

?
=

∫ ∞
−∞

sinc(x/2) sinc(x/3) · · · sinc(x/p) dx,

where the denominators range over all primes up
to p. Provably, the following is true: The “sum
equals integral” identity for σp remains valid at
least for p among roughly the first 10176 primes;
but stops holding after some larger prime, and
thereafter the “sum less the integral” is strictly
positive, but they always differ by much less than
one part in a googolplex = 1010

100

. An even
stronger estimate is possible assuming the Gener-
alized Riemann Hypothesis.
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